

0957-4166(94)E0088-R

NOVEL, GENERAL SYNTHESIS OF THE CHIRAL CATALYSTS DIPHOSPHINE-RUTHENIUM (II) DIALLYL COMPLEXES AND A NEW PRACTICAL IN SITU PREPARATION OF CHIRAL RUTHENIUM (II) CATALYSTS

J.P. Genêt*§, C. Pinel§, V. Ratovelomanana-Vidal§, S. Mallart§, X. Pfister§, M. C. Caño De Andrade§ and J.A. Laffitte§§

§ Lahoratoire de Synthèse Organique, Associé au C.N.R.S., Ecole Nationale Supérieure de Chimie de Paris,

11, rue Pierre et Marie Curie, 75231 Paris Cedex 05, France.

§ § Département Chimie Fine et Bioconversions, G.R.L. (Elf Aquitaine) 64170 Lacq, France.

Abstract: A general and new synthesis of hexacoordinate chiral 1-[2-methylallyl]Ru^{II} 2 complexes is presented. This synthesis uses the very accessible CODRu(2-methylallyl)₂ complex as starting material. These complexes (P*P)Ru(η³-(CH₂)₂CCH₃)₂ (e.g. P*P=DIOP, CBD, DEGUPHOS, BINAP, BIPHEMP, CHIRAPHOS, PROPHOS, DIMPC, BPPM, BDPP, DIPAMP, DIPAMPSi, β-PO-OP) have been characterized spectroscopically. X-Ray structures were obtained for (S,S)-DIOP and (S,S)-CHIRAPHOS. They are suitable for the preparation of chiral dihalide ruthenium (II) catalysts. In addition, we have found that it was possible to prepare these same catalysts directly *in situ* from (COD)Ru(η³-(CH₂)₂CCH₃)₂ by adding 1-1.3 equiv. of the appropriate chiral ligand in the presence of HX in acetone at room temperature.

Introduction

In the field of asymmetric hydrogenation, spectacular achievements have been made by using homogeneous catalysts. A great number of chiral diphosphines have been prepared and used with rhodium complexes². They are easily available from dimeric rhodium species [RhCl(olefin)₂]₂¹. The first chiral Ru^{II} catalyst RuDiop₃Cl₄ was discovered by James in 1975². Several other halogen containing Ru^{II} complexes bearing chiral diphosphines have been also proposed². More recently asymmetric hydrogenation using the BinapRu(η^2 -O₂CCH₃)₂ and BinapRu(arene)Cl have been introduced by Noyori and Takaya³ and [BinapRuCl₂]₂NEt₃ by Ikariya and Saburi⁴. These catalysts have found wide application in asymmetric hydrogenation with outstanding performances⁵. We have also introduced a new class of mononuclear chiral Ru^{II} catalysts, (P*P)Ru(η^3 -(CH₂)₂CCH₃)₂⁶. Our synthetic general method allows the production of ruthenium complexes from a wide variety of diphosphines: Diop, Chiraphos, atropisomeric diphosphines and diphosphines having chirality at the phosphorus atom such as Dipamp ⁷. Heiser has found a synthetically useful method for the first *in situ* preparation of atropisomeric diphosphines Ru^{II} bisacetate complexes including Binap, Biphemp and MeO-Biphep⁸. Brown has also described a facile preparation of a new chiral

P * P Ru(II)(2-methylallyl), complexes; P*P Ru(II)L₂

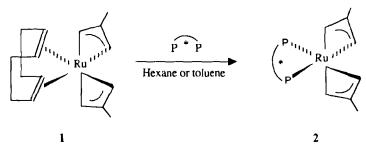
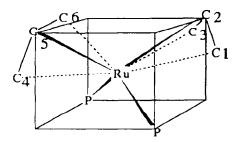

 $(L_2 = (2-methylallyl)_2, R=Me, R'=Ph)$

Table 1

complex $(P*P)Ru(allyl)(\eta^3-O_2)$ hexafluoroacetylacetonate)⁹. These conditions were suitable for the preparation of several catalysts from various diphosphines. Very recently, several other groups have described new improvements¹⁰ for the synthesis of Binap Ru catalysts including the Ikariya and Saburi complex⁴. We report here the synthesis of a novel family of mononuclear Ru^{II} complexes containing chelating phosphines.

Results and Discussion

In the preparation of P*P bidendate chiral Ru^{II} complexes (2-methylallyl)¹¹, the starting point of this study was the readily accessible (COD)Ru^{II}(η^3 -(CH₂)₂CCH₃)₂ 1 ¹² as starting material easily prepared in quantitative yield from the polymeric material (RuCl₂COD)_n ¹³. The complexes were isolated after heating (COD)Ru^{II}(η^3 -(CH₂)₂CCH₃)₂ in hexane or toluene in the presence of the appropriate chiral ligand (e.g.: DIOP, CBD, DEGUPHOS, CHIRAPHOS, DIMPC, BPPM, BDPP, β PO-OP). After displacement of 1,5 cyclooctadiene (COD), the hexacoordinate Ru^{II} catalysts 2 were isolated in 50-85% yield as shown in table 1.



Scheme 1

We have developed an efficient method for the preparation of diphosphines with two stereogenic phosphorus atoms (R,R)-DIPAMP ¹⁵ and modified (R,R)-DIPAMPSi ¹⁶. The COD ligand exchange reaction of 1 (scheme 1) with these chelating diphosphines, afforded in 50 to 85% yields respectively the desired Rucomplexes 2. The method described above was also applied to Binap and Biphemp ¹⁷. However the displacement of COD in 1 required higher temperatures (100-110°C, in toluene) for 5h to get an acceptable conversion. For these corresponding catalysts (Binap or Biphemp)Ru^{II}, it was not possible to characterize unambiguously their structures by ¹H or ¹³C NMR. However, the ³¹P NMR showed in both cases a common singlet at δ 27 ppm.

The structures of this full set of chiral catalysts are summarized in table 1. Most of these new chiral ruthenium (II) hexacoordinate complexes were isolated in an analytically pure state (except Binap and BiphempRu^{II}) and have been characterized by ¹H, ¹³C, ³¹P, IR, mass spectrum and elemental analysis. The ³¹P NMR spectra observed for the 5-membered ring ruthenium (II) complexes with chelating 1.2 diphosphines exhibited phosphorus resonance at δ 91-97 ppm range except for Deguphos (δ 64 ppm) whereas the ³¹P NMR spectra of the 7-membered ring Ru complexes with ligands such as Bppm, Diop, Cbd, Binap showed resonances at higher field (δ 56-21ppm). This observation has already been reported for related complexes (Ph₂P(CH₂)_nPPh₂RuOAc)BF₄ ¹⁸. Interestingly, the ¹³C NMR of all of these Ru^{II} complexes exhibited for the central carbon of the allyl moiety signals at δ 94-97 ppm range except for Bppm and Prophos which revealed two signals at δ 95.5 and 94.4 ppm and δ 96.4 and 96.7 ppm respectively.

The structure of two of these complexes has been confirmed by X-ray crystallography. Figure 1 shows the structure of the mononuclear unit of (S,S)-DIOPRu^{II}(η^3 -(CH₂)₂CCH₃)₂ and (S,S)-CHIRAPHOS Ru^{II}(η^3 -(CH₂)₂CCH₃)₂.

Scheme 2

The ruthenium atom is $\eta 3$ coordinated to the approximately planar allyl ligand as depicted in scheme 2. The ruthenium atom has distorted octahedral geometry defined by the two phosphorus atoms and the two η^3 allyl ligands. The Ru-P bond distances for these two complexes fall within the range reported for related (allyl)₂Ru(PPh₃)₂ complexes ¹⁹. In contrast, P-Ru-P angles (table 2 and 3) are smaller (96.8° for Diop and 84.9° for Chiraphos) than those reported with triphenyl phosphine. However, these values fall within the range reported for diphosphine Ru^{II} catalysts ^{1a, 9, 2d}.

The ruthenium - C_2 (Ru- C_2) carbon bond is shorter than the Ru- C_1 and Ru- C_3 bonds. The lengths as well as the angles for the η_3 -allyl moiety of (S,S)-DiopRu^{II}(η_3 -(CH₂)₂CCH₃)₂ and (S,S)-ChiraphosRu^{II}(η_3 -(CH₂)₂CCH₃)₂ are summarized in table 2 and 3.

(S,S)-DIOPRu(2-methylallyl)₂

	Bond	lengths	(A)
d(Ru-P)	2.325		
	2.342		
$d(Ru-C_2)$	2.17		
$d(Ru-C_5)$	2.19		
$d(C_2-C_1)$; $d(C_2-C_3)$	1.40	1.45	
$d(C_5\hbox{-} C_4)\;; d(C_5\hbox{-} C_6)$	1.38	1.38	
d(Ru-CH ₂)	2.24	2.25	
(C_1, C_3, C_4, C_6)	2.25	2.29	
	Bond	angles	(°)
α (P-Ru-P)	96.8		
$\alpha (P-Ru-C_2)$	119.5	122.6	

Table 2

110.1

108.4

Perspective views of (S,S)-DIOP Ru^{II}(η^3 -(CII₂)₂CCH₃)₂

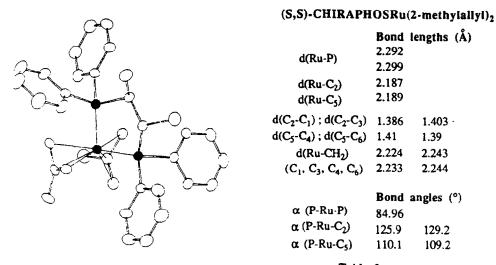
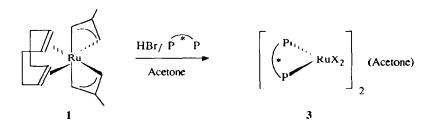


Table 3
Perspective views of (S,S)-CHIRAPHOS Ru^Π(η³-(CH₂)₂CCH₃)₂.

This efficient and reliable synthesis of hexacoordinate mononuclear ruthenium complexes (P^*P)Ru^{II}(n^3 -(CH₂)₂CCH₃)₂ allowed a general and easy preparation of halogen-containing complexes of the type P^*P Ru^{II} X_2]₂(acctone) 3 by mixing the chiral diphosphineRu(2-methylallyl)₂ and HX (X = Cl or Br) in a 1:2 ratio²⁰. These catalysts were not isolated but used without any purification for asymmetric hydrogenation.

In the case of Ru^{II} catalysts containing chloride, these latter complexes were presumably dimeric species: $[P*PRuCl_2]_2$ (acetone) confirmed by ^{31}P NMR spectra observed in the case of Diop as ligand (2 AB patterns, δ =45.0ppm, J=47.5Hz and δ =51.5ppm J=43.7Hz) and in agreement with previous results reported by several authors⁴a. 2f. 10h.

$$\begin{array}{c|c}
P_{1} & & \\
* & Ru \\
P & & Acetone
\end{array}$$


$$\begin{array}{c|c}
P_{1} & & \\
* & RuX_{2}
\end{array}$$
(Acetone)

Scheme 3

Interestingly, in addition to the previous method of protonation of chiral catalyst $(P^*P)Ru^{II}(\eta^3-(CH_2)_2CCH_3)_2$ (scheme 3), we were pleased to find a new and short method of preparation of chiral ruthenium (II) dibromide complexes: $[X_2Ru\ P^*P]_2$ (acetone). These chiral catalysts were also prepared directly in situ under one set of conditions (scheme 4) from $(COD)Ru(\eta^3-(CH_2)_2CCH_3)_2$ by adding at room temperature in

acctone 1.2 equiv. of the appropriate chiral ligand in the presence of HX. After stirring 30 min and removal of the solvent, some of these resulting complexes preformed (scheme 3) or prepared in situ (scheme 4) were examined by ³¹P NMR.

The ³¹P NMR(100MHz) spectra of [CbdRuBr₂]₂(acetone), [ChiraphosRuBr₂]₂(acetone) and [BinapRuBr₂]₂(acetone) preformed (scheme 3) and prepared *in situ* (scheme 4) were studied in order to compare the different species present for each chiral catalyst: the ³¹P NMR spectra indicated clearly a single common species between the catalyst preformed and prepared *in situ* in the case of [CbdRuBr₂]₂(acetone) (AB pattern, δ 55.4 ppm, J=39.4Hz). However, for Chiraphos and Binap, in addition to the common species observed for [ChiraphosRuBr₂]₂(acetone) (singlet, δ 40.1 ppm), we noticed the presence of additional species not clearly identified.

Scheme 4

Conclusion

Firstly, the present paper describes a new synthesis of chiral ruthenium(II) hexacoordinate complexes starting with $(COD)Ru(\eta^3-(CH_2)_2CCH_3)_2^{12}$, which consists of a generally mild exchange between cyclooctadiene (COD) and a wide range of optically active ligands including Diop, Chiraphos, Prophos, Cbd, Binap, Biphemp etc as well as chiral ligands having the phosphorus atom (Dipamp) as stereogenic center. Secondly, the application of this study as well as the new *in situ* generation of a whole set of new chiral catalysts presented in the following paper demonstrates the general character of our method. Thirdly, our method allows the rapid screening of a large set of new chiral diphosphines with preformed or prepared *in situ* ruthenium (II) complexes in asymmetric hydrogenation as demonstrated in the following paper.

Our new method of *in situ* preparation of dihalogeno chiral ruthenium (II) complexes offers some advantages compared to methods previously described¹⁹ in the literature: very mild reaction conditions, availability of the stable (COD)Ru(η^3 -(CH₂)₂CCH₃)₂¹² and finally compatibility with various new chiral diphosphines.

Acknowledgments: We appreciate Elf Aquitaine for providing generous financial support and grants to S. Mallart, C. Pinel and X. Pfister as well as CNP_q (Brazil) for a fellowship to M.C. Cano De Andrade. We thank Dr B. Heiser (Hoffman La Roche) for a gift of (+)-(S)-Biphemp and Dr C. Mercier (Rhône-Poulene) for providing us with a sample of (+) and () CBD. We also thank Dr. H. Frauenrath (Institut organische chemic der technische Hochschule) for a sample of β -PO OP. We are also very gratefull to Dr J. Waisserman

(Laboratoire Chimie des métaux de transitions, Université P. & M. Curie) for the determination of X-ray structures.

Experimental

General Methods

RuCl3, 3H₂O, Binap, Diop are commercially available from Janssen Chimica. Chiraphos, Prophos, Bppm, Dimpc are commercially available from Aldrich. Bnpe, Dipamp and DipampSi were prepared according to the published procedure^{15, 16}. The following solvents were freshly distilled and stored under argon prior to use: hexane and toluene from calcium hydride, methanol from magnesium turnings. All experiments with organometallic elements were performed in a nitrogen-filled dry box or by using standard Schlenk techniques. H and H3C Nuclear Magnetic Resonance (NMR). Spectra were recorded on a Bruker AM-250 or Bruker AM-200 Fourier transform spectrometer. Spectra were obtained in benzene-d or chloroform-d. Chemical shifts are reported in parts per million (ppm) with TMS as an internal reference, and coupling constants are reported in Hertz (Hz). Infrared (IR) spectra were recorded on a Perkin-Elmer 297 spectrometer.

Preparation of 1/n (CODRuCl₂)n¹⁸

2.45 g (9.4 mmol) of ruthenium (III) chloride trihydrate were dissolved in 95 % ethanol (100 mL). To this solution was added cyclooctadiene (9 ml, 75 mmol). The reaction medium was heated under reflux for 3 days. The deep green coloration disappeared and a brown precipitate was observed. After cooling to room temperature, the suspension was filtered off. The solid was washed with ethanol (2 x 30 mL) and dried in vacuo. 2.6 g of insoluble polymer were obtained (yield: 99 %).

Preparation of (COD)Ru(η³-(CH₂)₂CHCH₃)₂: following a modification of the literature procedure ¹² To a suspension of dichloro-[cyclo-octa-1,5-diene]-yl-ruthenium (II) (2.8g, 10 mM) in 30 mL of anhydrous ether was added a diethyl ether solution of 2-methylallyl magnesium chloride (60 mM, 0.4M). The mixture was stirred under argon for 2 hours. The resulting grey suspension was then filtered through celite. The filtrate was cooled to 0°C and hydrolyzed with 150mL of a mixture of ice-water and extracted with 2 x 100 mL of ether. The organic layers were dried (CaCl₂), filtered through alumina and evaporated to dryness. The resulting black residue was washed with 10mL of cold methanol to provide a pale grey solid (2.9g, yield 91%) which was recrystallized in a mixture of petroleum ether and methanol.

Preparation of chiral ruthenium (II) catalysts $(P*P)Ru(\eta^3-(CH_2)_2CCH_3)_2$ General procedure :

(COD)Ru(η₃-(CH₂)₂CHCH₃)₂ (0.5 mM) and the chiral diphosphine (1 equiv.) were introduced in a Schlenk vessel. To these solids were added 2mL of degassed hexane and the mixture was then heated to 70°C (oil bath temperature) for 5 hours. A solid precipitated during the course of the reaction. The resulting solid was filtered under argon and washed with 1mL of degassed hexane. The diphosphineRu(methylallyl)₂ complexes obtained were stored under argon. For the preparation of Binap and BiphempRu(2-methylallyl)₂, the same procedure was employed except that hexane was replaced by toluene and the solution heated to 110°C for 5h. The reaction mixture was then cooled, evaporated in vacuo and washed with 1mL of degassed hexane.

- (-)-DIOPRu(η^3 -(CH₂)₂CHCH₃)₂: 1 H NMR (250 MHz, C₆D₆): 1.0 (m, 2H); 1.3 (s, 6H); 1.32 (q, J = 14.5 Hz, 4H); 2.04 (s, 6H); 2.55 (m, 2H); 2.79 (dd, J₁ = 8.5 Hz, J₂ = 13 Hz, 6H); 3.25 (t, J = 13 Hz, 6H) 4.15 (m, 2H); 6.8-8.0 (m, 20H, aromatics). 13 C NMR (62 MHz, C₆D₆): 25.77; 27.2; 31.5 (m); 42.5; 48.31 (m); 78.8; 95.7; 107.9; 127 140 (aromatics). 31 P NMR (100 MHz, C₆D₆): 36 (ref: H₃PO₄ 85%). IR (Nujol): 1595, 1240 cm⁻¹ [α I_D²⁵ +202 (c = 0.43, toluene). m.p. = 204°C (decomposition).
- (-)-CHIRAPHOSRu(η^3 -(CH₂)₂CHCH₃)₂: ¹H NMR (250 MHz, C₆D₆) : 1.06 (d, J = 6.5 Hz, 2H) ; 1.12 (d, J = 6.5 Hz, 2H) ; 1.24 (q, J = 2.5 Hz, 6H) ; 1.61 (d, J = 2.5 Hz, 2H) ; 1.74 (d, J = 2.5 Hz, 2H) ; 2.15 (s, 6H) ; 6.8-8.0 (m, 20H, aromatics). ¹³C NMR (62 MHz, C₆D₆) : 18.4 ; 26.1; 40.3 (m) ; 44.3 (d, J = 28 Hz) ; 44.7 (d, J = 28 Hz) ; 45.9 ; 97.1 ; 127-133 (aromatics). ³¹P NMR (100 MHz, C₆D₆) : 87.6 (ref : H₃PO₄ 85%). IR (Nujol) : 1580, 1085, 1015, 760, 720 cm⁻¹.[α]_D²⁵ = +60 (c = 0.2, toluene). m.p. = 183°C (decomposition).
- (-)-BPPMRu(η^3 -(CH₂)₂CHCH₃)₂: ¹³C NMR (62 MHz, C₆D₆) : 24.9 ; 26.8 ; 28.6 ; 31.2 ; MS (EI, 70 e. V.) : 707 ; 651 ; 605 ; 551 ; 526. 31.8 (d, J = 15 Hz) ; 34.7 ; 42.7 ; 43.8 (d, J = 25 Hz) {a}_D²⁰ = -183 (c = 0.4, toluene) 46.9 (d, J = 20 Hz) ; 49.7 ; 54.9 ; 56.6 (d, J = 25 Hz) m.p. = 160-165°C (decomposition). ³¹P NMR (100 MHz, C₆D₆) : 35.56 (ref : H₃PO₄ 85%) IR (KBr) : 3047 ; 1698 ; 1681 cm⁻¹.
- (+)-DIMPCRu(η^3 -(CH₂)₂CHCH₃)₂: ¹H NMR (250 MHz, C₆D₆): 1.15 (m, 1H); 1.25 (d, J = 125 Hz, 2H); 1.50 (d, J = 100 Hz, 1H); 1.55 (m, 1H); 1.80 (s, 1H); 1.90 (d, J = 125 Hz, 1H); 2.00 (sl, 1H); 2.35 (s, 3H); 2.65 (dd, J = 5 Hz, J₂ = 12 Hz, 1H); 2.80 (t, J = 12 Hz, 1H); 3.15 (sl, 1H); 6.80-8.10 (m, 10H) ¹³C (50 MHz, C₆D₆): 25.8; 26.2; 38.2; 38.5; 40.6; 95.0; 126-135. ³¹P NMR (100 MHz, C₆D₆): 21 (ref: H₃PO₄ 85%) IR: 697; 1432; 2919 cm⁻¹.[α]_D²⁰ = -166 (c = 0.35, toluene). m.p. = 170°C. Anal. Calc. for C₄₀H₄₈P₂Ru = C, 69.46; H, 6.95; P, 8.97; Ru, 14.62. Found C, 68.68; H, 6.99; P, 8.41; Ru, 15.46.
- (-)-CBDRu(η^3 -(CH₂)₂CHCH₃)₂: ¹H NMR (250 MHz, C₆D₆): 1.06 (dd, J = 17.5 Hz, J₂ = 5.0 Hz, 1H) 1.35 (m, 2H): 1.51 (d, J = 150 Hz, 1H); 1.63 (dl, J = 5.0 Hz, 1H); 2.10 (s, 3H); 2.18 (s, 1H): 2.50 (m, 3H); 6.95-8.00 (m, 10H). ¹³C NMR (50 MHz, C₆D₆): 25.2; 27.0; 27.1; 39.5; 42.1; 94.2; 126-134. ³¹P NMR (100 MHz, C₆D₆): 21 (ref: H₃PO₄ 85%) IR (KBr): 697; 1026; 1087; 1432 2946. [a]D²⁰ = -236 (c = 0.5, toluene). m.p. = 174-176°C (decomposition). Anal. Calc. for C₃₈H₄₄P₂Ru = C, 68.78; H, 6.54; P, 9.35 Ru, 15.23 Found C, 66.92; H, 6.91; P, 8.55; Ru 16.65.
- (+)-**DEGUPHOSRu**(η^3 -(CH₂)₂CHCH₃)₂: ¹H NMR (250 MHz, C₆D₆): 0.70 (dd, J = 29.0 Hz, J₂ = 11.0 Hz, 2H); 1.35 (s, 1H); 2.00 (s, 3H): 2.10 (m, 1H); 2.90 (dl, J = 25.0 Hz, 2H); 3.30 (dd, J = 54.0 Hz, J₂ = 14.0 Hz, 1H); 3.85 (ls, 1H); 6.50-7.70 (m, 15H). ¹³C NMR (62 MHz, C₆D₆): 26.0: 30.0 (d, J = 7 Hz); 41.0; 43.0; 53.0; 61.0; 95.0; 125.0. ³¹P NMR (100 MHz, C₆D₆): 64 (ref: H₃PO₄ 85%) IR (KBr) 523: 698: 1022: 2917; 3051. [α | $_D^{20}$ = +40 (c = 0.14, toluene).
- (+)-PROPHOSRu(η^3 -(CH₂)₂CHCH₃)₂: ¹H NMR (250 MHz, C₆D₆): 1.05 (d, J = 5.0 Hz, 1H); 1.28 (d, J = 5.0 Hz, 1H); 1.48 (t, J = 6.0 Hz, 2H); 1.72 (t, J = 3.0 Hz; 3H); 2.0 (sl, 2H); 2.17 (d, J = 1.0 Hz, 1H); 2.49 (s, 3H); 2.66 (s, 3H); 2.7 (d, J = 1 Hz, 1H); 2.90 (m, 1H); 3.50 (m, 2H); 6.8-8.0 (m, 20H). ¹³C NMR (62 MHz, C₆D₆): 18.8 (dd, J = 10 Hz, J₂ = 30 Hz); 26.4; 26.6; 40.1 (dd, J = 32 Hz, J₂ = 38.0 Hz). ³¹P NMR (100 MHz, C₆D₆): 89.2; 71.2 (ref: H₃PO₄ 85%). m.p. 195°C (decomposition).
- (-)-BDPPRu(η^3 -(CH₂)₂CHCH₃)₂: ¹H NMR (200 MHz, C₆D₆) : 0.83 (m, CH) ; 1.28 (m, 2H) ; 1.41 (sl. 2H) ; 2.12 (sl. 7H) ; 2.22 (sl. 4H) ; 2.78 (sl. 3H) , 5.60 (s. 1H) ; 7.10-7.60 (m, 20H). ¹³C NMR (50 MHz, C₆D₆) : 18.7 ; 26.3 ; 28.3 ; 30.2 ; 31.9 ; 39.1 ; 90.5 ; 127-136. ³¹P NMR (100 MHz, C₆D₆) : 51.7 (ref : H₃PO₄ 85%). [α]_D²⁰ = +255 (c = 0.32, toluene).

(-)-DIPAMPSiRu(η^3 -(CH₂)₂CHCH₃)₂: ¹H NMR (250 MHz, C₆D₆): 0.30 (s, 3H); 1.30 (dd, J = 12.0 Hz, $J_2 = 15.5$ Hz, I_1 Hz; I_2 (s, I_3 Hz); I_3 (t, I_3 Hz, I_3 Hz); I_3 (m, I_3 Hz); I_3 (s, I_4 Hz); I_3 (s, I_3 Hz); I_3 (s, I_4 Hz); I_4 (s, 2.97 (s, 3H); 6.40-7.66 (m, 9H). 13 C NMR (62 MHz, C₆D₆): 25; 20.1; 26.6; 40.7; 49.0 (d, J = 24 Hz); 54.5; 96.1; 111.2-159.8. ³¹P NMR (100 MHz, C₆D₆): 38.7 (ref: H₃PO₄ 85%).IR: 798; 1024; 1247; 1433 1477; 1569; 2944. $[\alpha]_D^{20} = +186$ (c = 0.5, toluene) m.p. = 180°C. (-)-DIPAMPRu(η^3 -(CH₂)₂CHCH₃)₂: MS (DCI/NH₃, au/z = 671, 615 (100%). ¹H NMR (250 MHz, C_6D_6): 0.25 (d, J = 15.0 Hz, 2H); 1.10 (dd, J = 15 Hz, J_2 = 5.0 Hz, 2H); 1.70 (b, 2H); 2.22 (d, J = 2.0 Hz, 2H); 2.31 (s, 6H); 2.92 (s, 6H); 3.40 (m, 4H); 6.50-8.10 (m, 18H). 13 C NMR (62 MHz, C_6D_6): 26.6 32.5 (dd, J = 27 Hz, $J_2 = 2 \text{ Hz}$); 42.4 (d, J = 25 Hz); 44.3; 54.0; 96.1; 110.6; 120.6; 126.1-130.0; 134.6 142.3; 159.9. ³¹P NMR (100 MHz, C₆D₆): 85.0 (ref: H₃PO₄ 85%).IR (nujol): 750: 800; 1240; 1380; $[\alpha]_D^{20} = -43$ (c = 0.23, toluene) m.p. = 183-185°C (decomposition). Calc. for $C_{36}H_{42}O_{2}P_{2}Ru =$ C, 64.57; H, 6.29; O, 4.78; P, 9.27; Ru, 15.10 found C, 64.84; H, 6.42; P, 8.28, Ru, 15.30. β-PO-OP(η³-(CH₂)₂CHCH₃)₂: 31 P NMR (100 MHz, C₆D₆) : 133.03 (ref. H₃PO₄ 85 %). [α]_D²⁰ = -180 $(c = 0.5, CHCl_3).$ (+)-BINAP or (+)-BIPHEMP)Ru(η^3 -(CH₂)₂CHCH₃)₂: ³¹P NMR (100MHz) -15; 27; 40 (ref : H₃PO₄ 85%)

Preparation of dihalogenodiphosphine ruthenium (II) complexes: [P*PRuX₂]₂ General procedure:

 $(COD)Ru(\eta_3-(CH_2)_2CCH_3)_2$ complex was dissolved in 1ml degassed acetone. To this solution were slowly added 2.2 equiv. of HX in methanol (X=Cl; Br; I). The resulting dark red solution was stirred for 1/2 hour, the solvent was removed under reduced pressure to give dihalogeno complexes which were used directly as hydrogenation catalysts as shown in the following paper.

Preparation of in situ dihalogenodiphosphine ruthenium(II) complexes: $[P^*PRuX_2]_2$ General procedure:

 $(COD)Ru(\eta_3-(CH_2)_2CCH_3)_2$ complex and the chiral diphosphine (1.2 equiv) were dissolved in 1ml degassed acetone and 2.2 equiv. of HX in methanol (X=Cl, Br, I) were slowly added. The resulting orange solution was stirred for 1/2 hour, the solvent was removed under reduced pressure to give dihalogeno complexes which were used directly as hydrogenation catalysts.

References and notes

- 1) For general preparation of these catalysts see: a) Schrock, R.R.; Osborn, J.A. J. Am. Chem. Soc. 1971, 93, 2397; b) Brown, J.M. Angew. Chem. Int. Ed. Engl. 1987, 26, 140; c) Fruzuk, M.D.; Bosnich, B. J. Am. Chem. Soc. 1977, 99, 6262.
- 2) a) James, B.R.; Wang, D.K.W.; Voigt, R.F J. Chem. Soc. Chem. Commun, 1975, 574; b) James, B. R.; Wang, D. K. W. Inorg. Chim. Acta 1976, 19, L17: c) Ball, R. G.; James, B. R.; Trotter, J.; Wang, D. K. W.J. Chem. Soc. Chem. Commun. 1979, 460; d) Thomas, W. Dekleva, I. S. Thorburn, B. R. James Inorg. Chim. Acta 1985, 100, 49; e) Thorburn, I. S.; Rettig, S. J.; James, B. R. J. Organomet. Chem. 1985, 296, 103; f) James, B. R.; Pacheco, A.; Rettig, S. J.; Thorburn, I. S.; J. Mol. Catal. 1987, 41, 147. 3) a) Ohta, T.; Takaya, H.; Noyori, R. Inorg. Chem. 1988, 27, 566; b) Mashina, K.; Kusano, K. H.; Ohta, T.; Noyori, R.; Takaya, H. J. Chem. Soc. 1989, 1208; c) for in situ preparation see: Kitamura, M.; Tokunaga, M.; Noyori, R. J. Org. Chem. 1992, 57, 4053; d) Kitamura, M.; Tokunaga, M.; Ohkuma, T.; Noyori, R. Tetrahedron Lett, 1991, 32, 4163.
- 4) a) Ikariya, T.; Ischii, Y.; Kawano, H.; Arai, T.; Saburi, M.; Yoshikawa, S.; Akutagawa, S. J. Chem. Soc. Chem. Commun. 1985, 922; b) Saburi, M.; Aoyagi, K.; Kodama, T.; Takahushi, T.; Uchida, Y.; Kozawa, K.; Uchida, T. Chem. Lett. 1990, 1909. c) Tsukahava, T.; Kawano, H.; Ishii, Y; Takahashi, T.; Saburi, M.; Uchida, Y.; Akutagawa, S. Chem. Lett. 1988, 2055.
- 5) For some leading references relative to this excellent technology see: a) Reviews: Noyori, R.; Kitamura, M. in Modern Synthetic Methods Ed. R. Scheffold, Spinger Verlag, 1989, 128; Noyori, R. Chem. Soc. Rev. 1989, 18, 209-224; Noyori, R. Science 1990, 248, 1194; b) Kawano, H.; Ishii, Y.; Ikariya, T.; Saburi, S. Yoshikawa, M., Uchida, Y.; Kumobayashi, H. Tetrahedron Lett. 1987, 28, 1905; c) Kawano, H.; Ikariya, T.; Ishii, Y.; Saburi, M.; Yoshikawa, S.; Uchida Y.; Kumobayashi, H. J. Chem. Soc. Perkin Trans 1, 1989, 1571.
- 6) Genêt, J. P.; Mallart, S.; Pinel, C.; Jugé, S. Tetrahedron: Asymmetry 1991, 2, 43.
- 7) a) Genêt, J. P.; Pinel, C.; Mallart, S.; Caihlol, N.; Laffitte, J.A. Terrahedron Lett. 1992, 33, 5343. b) Genêt, J.P.; Mallart, S.; Jugé, S. Brevet Français nº 8911159 (August 1989).
- 8) Heiser, B.; Broger, E. A.; Crameri, Y. Teirahedron: Asymmetry, 1991, 2, 51.
- 9) Alcock, N. W.; Brown, J. M.; Rose, M.; Wienand, A. Tetrahedron: Asymmetry, 1991, 2, 47.
- 10) For other methods of preparation of chiral ruthenium complexes see:
- a) Mashima, K.; Hino, T.; Takaya, H. Tetrahedron Lett. 1991, 32, 3101; b) James, B. R.; Pacheco, A.; Rettig, S. J.; Thorburn, I. S. J. mol. Catal. 1987, 41, 147; c) Taber, D. F.; Deker, P. B.; Silverberg, L. J. J. Org. Chem. 1992, 57, 5990; d) Taber, D. F.; Silverberg, L. J.; Robinson, E. D. J. Am. Chem. Soc. 1991. 113, 6639; e) Taber, D. F.; Silverberg, L. J. Tetrahedron Lett. 1991, 32, 4227; f) Stahly, P. G.; Manimaran, T.; Wu, T. C.; Klobucar, W. D.; Kolich, C. H.; Franczek, F. R.; Watkins, S. E. Organometallics 1993, 12, 1467; g) Hoke, J. B.; Hollis, L. S.; Stern, E. W. J. Organomet Chem. 1993, 455, 193; h) Mezzetti, A.; Consiglio, G. J. Chem. Soc. Chem. Commun 1991, 1675; i) King, S. A.; Thompson, A. S.; King, A. O.; Verhoeven, T. R. J. Org. Chem. 1992, 57, 6689.
- 11) Taken in part from Doctoral Thesis of C. Pinel (Université P. & M. Curie, 1992).
- 12) Powell, J.; Shaw, A. B. J. Chem. Soc. (A), 1968, 159. This material will be commercially available from Janssen Chimica.
- 13) Muller, J.; Fischer, E. O. J. Organomet. Chem. 1966, 5, 275.
- 14) Reviews: For a synthesis of chiral ligands see a) Kagan, H.B. Asymmetric Synthesis, Morrison, J.D. Ed. Academic Press, New York, 1985, 1, Vol 5; b) see also Topics in Stereochemistry, H. Brunner for an informative presentation of optically active ligands with their generally accepted acronyms.
- 15) Jugé, S.; Stephan, M.: Laffitte, J. A.; Genêt, J.P. *Tetrahedron Lett.* 1990, 31, 6357. 16) Taken in part from Doctoral Thesis of Stephan, M. and Merdes, R. (Université P. & M. Curie, respectively 1991 and 1993). The preparation of (R,R)-DipampSi will be published in due course.
- 17) For the preparation (+) and (-) Biphemp see: Schmid, R.; Cereghetti, M.; Heiser, B.; Schönholzer, P.; Hansen, H.J. Helv. Chim. Acta. 1988, 71, 897.
- 18) a) Boyar, E. B.; Harding, P. A.; Robinson, S. D.; Brock, C. P. J. Chem. Soc. Dalton Trans 1986, 1771.
- b) Garrou, P. E. Chem. Rev. 1981, 81, 229.

 19) Smith, A. E. Inorg. Chem. 1972, 11, 2306.

 20) The BinapRuX2 (X = Cl, I, Br) catalysts have been also prepared by protonation of BINAPRu(OAc)2 see Noyori, R.; Ohkuma, T.; Kitamura, K.; Takaya, H.; Sayo, N.; Kumobayashi, H.; Akutagawa, S. J. Am. Chem. Soc. 1987, 109, 5856.
- 21) Müller, J.; Fischer, E. O. J. Organomet. Chem., 1966, 5, 275.
- 22) a) Manimaran, T.; Wu, T.-C.; Klobukar, W. D.; Kolich, C. H.; Stahly, P. Organometallics. 1993, 12, 1467; b) Kitamura, M.; Tokunaga, M.; Ohkuma, T.; Noyori, R. Tetrahedron Lett. 1991, 33, 4163 and references cited herein.